版权所有 2018 JAX 作者。
根据 Apache 许可证 2.0 版(“许可证”)授权;
根据 Apache 许可证 2.0 版(“许可证”)授权;除非符合许可证,否则您不得使用此文件。您可以在以下网址获取许可证副本:
https://www.apache.org/licenses/LICENSE-2.0
除非适用法律要求或以书面形式达成协议,否则根据许可证分发的软件按“原样”分发,不附带任何明示或暗示的保证和条件。请参阅许可证以了解管理权限和限制的具体语言。
使用 TensorFlow/Datasets 加载数据训练简单的神经网络#
源自 neural_network_and_data_loading.ipynb
让我们结合我们在快速入门中展示的所有内容来训练一个简单的神经网络。我们首先将使用 JAX 进行计算,并在 MNIST 上指定并训练一个简单的 MLP。我们将使用 tensorflow/datasets
数据加载 API 加载图像和标签(因为它非常棒,而且世界不需要另一个数据加载库 :P)。
当然,您可以将 JAX 与任何与 NumPy 兼容的 API 配合使用,以使模型的指定更加即插即用。这里,仅出于说明目的,我们不会使用任何神经网络库或特殊 API 来构建我们的模型。
import jax.numpy as jnp
from jax import grad, jit, vmap
from jax import random
超参数#
让我们先处理一些簿记事项。
# A helper function to randomly initialize weights and biases
# for a dense neural network layer
def random_layer_params(m, n, key, scale=1e-2):
w_key, b_key = random.split(key)
return scale * random.normal(w_key, (n, m)), scale * random.normal(b_key, (n,))
# Initialize all layers for a fully-connected neural network with sizes "sizes"
def init_network_params(sizes, key):
keys = random.split(key, len(sizes))
return [random_layer_params(m, n, k) for m, n, k in zip(sizes[:-1], sizes[1:], keys)]
layer_sizes = [784, 512, 512, 10]
step_size = 0.01
num_epochs = 10
batch_size = 128
n_targets = 10
params = init_network_params(layer_sizes, random.key(0))
自动批处理预测#
首先,让我们定义我们的预测函数。请注意,我们是在为单个图像示例定义此函数。我们将使用 JAX 的vmap
函数自动处理小批量,而不会造成性能损失。
from jax.scipy.special import logsumexp
def relu(x):
return jnp.maximum(0, x)
def predict(params, image):
# per-example predictions
activations = image
for w, b in params[:-1]:
outputs = jnp.dot(w, activations) + b
activations = relu(outputs)
final_w, final_b = params[-1]
logits = jnp.dot(final_w, activations) + final_b
return logits - logsumexp(logits)
让我们检查一下我们的预测函数是否只对单个图像起作用。
# This works on single examples
random_flattened_image = random.normal(random.key(1), (28 * 28,))
preds = predict(params, random_flattened_image)
print(preds.shape)
(10,)
# Doesn't work with a batch
random_flattened_images = random.normal(random.key(1), (10, 28 * 28))
try:
preds = predict(params, random_flattened_images)
except TypeError:
print('Invalid shapes!')
Invalid shapes!
# Let's upgrade it to handle batches using `vmap`
# Make a batched version of the `predict` function
batched_predict = vmap(predict, in_axes=(None, 0))
# `batched_predict` has the same call signature as `predict`
batched_preds = batched_predict(params, random_flattened_images)
print(batched_preds.shape)
(10, 10)
至此,我们已经具备了定义神经网络并对其进行训练的所有要素。我们构建了一个predict
的自动批处理版本,我们应该能够在损失函数中使用它。我们应该能够使用grad
来计算损失相对于神经网络参数的导数。最后,我们应该能够使用jit
来加速所有操作。
实用程序和损失函数#
def one_hot(x, k, dtype=jnp.float32):
"""Create a one-hot encoding of x of size k."""
return jnp.array(x[:, None] == jnp.arange(k), dtype)
def accuracy(params, images, targets):
target_class = jnp.argmax(targets, axis=1)
predicted_class = jnp.argmax(batched_predict(params, images), axis=1)
return jnp.mean(predicted_class == target_class)
def loss(params, images, targets):
preds = batched_predict(params, images)
return -jnp.mean(preds * targets)
@jit
def update(params, x, y):
grads = grad(loss)(params, x, y)
return [(w - step_size * dw, b - step_size * db)
for (w, b), (dw, db) in zip(params, grads)]
使用tensorflow/datasets
加载数据#
JAX 专注于程序转换和加速器支持的 NumPy,因此我们在 JAX 库中不包含数据加载或处理。已经有许多优秀的加载器,因此我们只需使用它们,而无需重新发明轮子。我们将使用tensorflow/datasets
数据加载器。
import tensorflow as tf
# Ensure TF does not see GPU and grab all GPU memory.
tf.config.set_visible_devices([], device_type='GPU')
import tensorflow_datasets as tfds
data_dir = '/tmp/tfds'
# Fetch full datasets for evaluation
# tfds.load returns tf.Tensors (or tf.data.Datasets if batch_size != -1)
# You can convert them to NumPy arrays (or iterables of NumPy arrays) with tfds.dataset_as_numpy
mnist_data, info = tfds.load(name="mnist", batch_size=-1, data_dir=data_dir, with_info=True)
mnist_data = tfds.as_numpy(mnist_data)
train_data, test_data = mnist_data['train'], mnist_data['test']
num_labels = info.features['label'].num_classes
h, w, c = info.features['image'].shape
num_pixels = h * w * c
# Full train set
train_images, train_labels = train_data['image'], train_data['label']
train_images = jnp.reshape(train_images, (len(train_images), num_pixels))
train_labels = one_hot(train_labels, num_labels)
# Full test set
test_images, test_labels = test_data['image'], test_data['label']
test_images = jnp.reshape(test_images, (len(test_images), num_pixels))
test_labels = one_hot(test_labels, num_labels)
print('Train:', train_images.shape, train_labels.shape)
print('Test:', test_images.shape, test_labels.shape)
Train: (60000, 784) (60000, 10)
Test: (10000, 784) (10000, 10)
训练循环#
import time
def get_train_batches():
# as_supervised=True gives us the (image, label) as a tuple instead of a dict
ds = tfds.load(name='mnist', split='train', as_supervised=True, data_dir=data_dir)
# You can build up an arbitrary tf.data input pipeline
ds = ds.batch(batch_size).prefetch(1)
# tfds.dataset_as_numpy converts the tf.data.Dataset into an iterable of NumPy arrays
return tfds.as_numpy(ds)
for epoch in range(num_epochs):
start_time = time.time()
for x, y in get_train_batches():
x = jnp.reshape(x, (len(x), num_pixels))
y = one_hot(y, num_labels)
params = update(params, x, y)
epoch_time = time.time() - start_time
train_acc = accuracy(params, train_images, train_labels)
test_acc = accuracy(params, test_images, test_labels)
print("Epoch {} in {:0.2f} sec".format(epoch, epoch_time))
print("Training set accuracy {}".format(train_acc))
print("Test set accuracy {}".format(test_acc))
Epoch 0 in 28.30 sec
Training set accuracy 0.8400499820709229
Test set accuracy 0.8469000458717346
Epoch 1 in 14.74 sec
Training set accuracy 0.8743667006492615
Test set accuracy 0.8803000450134277
Epoch 2 in 14.57 sec
Training set accuracy 0.8901500105857849
Test set accuracy 0.8957000374794006
Epoch 3 in 14.36 sec
Training set accuracy 0.8991333246231079
Test set accuracy 0.903700053691864
Epoch 4 in 14.20 sec
Training set accuracy 0.9061833620071411
Test set accuracy 0.9087000489234924
Epoch 5 in 14.89 sec
Training set accuracy 0.9113333225250244
Test set accuracy 0.912600040435791
Epoch 6 in 13.95 sec
Training set accuracy 0.9156833291053772
Test set accuracy 0.9176000356674194
Epoch 7 in 13.32 sec
Training set accuracy 0.9192000031471252
Test set accuracy 0.9214000701904297
Epoch 8 in 13.55 sec
Training set accuracy 0.9222500324249268
Test set accuracy 0.9241000413894653
Epoch 9 in 13.40 sec
Training set accuracy 0.9253666996955872
Test set accuracy 0.9269000291824341
我们现在已经使用了大部分 JAX API:grad
用于计算导数,jit
用于加速,vmap
用于自动矢量化。我们使用 NumPy 指定了所有计算,并借用了tensorflow/datasets
的优秀数据加载器,并在 GPU 上运行了整个过程。