jax.experimental.custom_partitioning
模块#
API#
- jax.experimental.custom_partitioning.custom_partitioning(fun, static_argnums=())[源代码]#
在 XLA 图中插入一个 CustomCallOp,并带有自定义的 SPMD 降阶规则。
@custom_partitioning def f(*args): return ... def propagate_user_sharding(mesh, user_shape): '''Update the sharding of the op from a user's shape.sharding.''' user_sharding = jax.tree.map(lambda x: x.sharding, user_shape) def partition(mesh, arg_shapes, result_shape): def lower_fn(*args): ... builds computation on per-device shapes ... result_shardings = jax.tree.map(lambda x: x.sharding, result_shape) arg_shardings = jax.tree.map(lambda x: x.sharding, arg_shapes) # result_sharding and arg_shardings may optionally be modified and the # partitioner will insert collectives to reshape. return mesh, lower_fn, result_sharding, arg_shardings def infer_sharding_from_operands(mesh, arg_shapes, shape): '''Compute the result sharding from the sharding of the operands.''' arg_shardings = jax.tree.map(lambda x: x.sharding, arg_shapes) f.def_partition(partition, propagate_user_sharding, infer_sharding_from_operands=infer_sharding_from_operands, sharding_rule='i j -> 'i j') When config.use_shardy_partitioner.value is True, the sharding_rule is used; otherwise, propagate_user_sharding and infer_sharding_from_operands are used. Instead of using an Einsum-like notation string, sharding_rule can also be a SdyShardingRule object, such as sharding_rule=SdyShardingRule(("i", "j"), ("i", "j")).
def_partition
的参数如下:propagate_user_sharding
: 一个可调用对象,它接受用户(在 dag 中)的分片,并返回一个新的 NamedSharding 的建议。默认的实现是直接返回建议的分片。partition
: 一个可调用对象,它接受 SPMD 建议的分区形状和分区规范,并返回网格、每个分片的降阶函数,以及最终的输入和输出分片规范(SPMD 分区器将重新分区输入以匹配)。返回网格是为了在没有提供网格时配置集合的 axis_names。infer_sharding_from_operands
: 一个可调用对象,它从为每个参数选择的NamedSharding
计算输出NamedSharding
。decode_shardings
: 如果设置为 True,则尽可能将输入GSPMDSharding
转换为NamedSharding
。如果用户没有提供上下文网格,则可能无法进行转换。sharding_rule
: SdyShardingRule 对象或类似 Einsum 表示法的字符串,描述分片规则。我们借鉴了 einops.rearrange 字符串的想法,在因子之间使用空格分隔符,并允许使用多个字母的因子名称。
可以使用 static_argnums 将位置参数指定为静态参数。JAX 使用
inspect.signature(fun)
来解析这些位置参数。示例
例如,假设我们想增强现有的
jax.numpy.fft.fft
。此函数计算 N 维输入沿最后一个维度的离散傅里叶变换,并沿前 N-1 个维度进行批处理。但是,默认情况下,它会忽略输入的分片,并将输入收集到所有设备上。但是,由于jax.numpy.fft.fft
是沿前 N-1 个维度进行批处理的,因此这是不必要的。我们将创建一个新的my_fft
操作,它不会改变沿前 N-1 个维度的分片,并且仅在需要时沿最后一个维度收集输入。import jax from jax.sharding import NamedSharding from jax.experimental.custom_partitioning import custom_partitioning from jax.experimental.pjit import pjit from jax.sharding import PartitionSpec as P from jax.sharding import Mesh from jax.numpy.fft import fft import regex as re import numpy as np # Pattern to detect all-gather or dynamic-slice in the generated HLO _PATTERN = '(dynamic-slice|all-gather)' # For an N-D input, keeps sharding along the first N-1 dimensions # but replicate along the last dimension def supported_sharding(sharding, shape): rank = len(shape.shape) max_shared_dims = min(len(sharding.spec), rank-1) names = tuple(sharding.spec[:max_shared_dims]) + tuple(None for _ in range(rank - max_shared_dims)) return NamedSharding(sharding.mesh, P(*names)) def partition(mesh, arg_shapes, result_shape): result_shardings = jax.tree.map(lambda x: x.sharding, result_shape) arg_shardings = jax.tree.map(lambda x: x.sharding, arg_shapes) return mesh, fft, supported_sharding(arg_shardings[0], arg_shapes[0]), (supported_sharding(arg_shardings[0], arg_shapes[0]),) def infer_sharding_from_operands(mesh, arg_shapes, result_shape): arg_shardings = jax.tree.map(lambda x: x.sharding, arg_shapes) return supported_sharding(arg_shardings[0], arg_shapes[0]) @custom_partitioning def my_fft(x): return fft(x) # Use Einsum-like notation to specify the sharding rule. my_fft.def_partition( infer_sharding_from_operands=infer_sharding_from_operands, partition=partition, sharding_rule='...i -> ...i') # Use SdyShardingRule object to specify the sharding rule. my_fft.def_partition( infer_sharding_from_operands=infer_sharding_from_operands, partition=partition, sharding_rule=SdyShardingRule(operand_mappings=((SDY_BATCHING, 'i'),), result_mappings=((SDY_BATCHING, 'i'),))))
现在创建一个沿第一个轴分片的二维数组,将其传递给
my_fft
,并注意它仍然按预期分片,并且与fft
的输出相同。但是,检查 HLO(使用lower(x).compile().runtime_executable().hlo_modules()
)会发现my_fft
不会创建任何 all-gather 或动态切片,而fft
会创建。with Mesh(np.array(jax.devices()), ('x',)): x = np.asarray(np.random.randn(32*1024, 1024), dtype=np.complex64) y = pjit(lambda x: x, in_shardings=None, out_shardings=P('x'))(x) pjit_my_fft = pjit(my_fft, in_shardings=P('x'), out_shardings=P('x')) pjit_fft = pjit(fft, in_shardings=P('x'), out_shardings=P('x')) print(pjit_my_fft(y)) print(pjit_fft(y)) # dynamic-slice or all-gather are not present in the HLO for my_fft, because x is a 2D array assert(re.search(_PATTERN, pjit_my_fft.lower(x).compile().runtime_executable().hlo_modules()[0].to_string()) is None) # dynamic-slice or all-gather are present in the HLO for fft assert(re.search(_PATTERN, pjit_fft.lower(x).compile().runtime_executable().hlo_modules()[0].to_string()) is not None)
# my_fft [[-38.840824 +0.j -40.649452 +11.845365j ... -1.6937828 +0.8402481j 15.999859 -4.0156755j]] # jax.numpy.fft.fft [[-38.840824 +0.j -40.649452 +11.845365j ... -1.6937828 +0.8402481j 15.999859 -4.0156755j]]
由于
supported_sharding
中的逻辑,my_fft
也适用于一维数组。但是,在这种情况下,my_fft
的 HLO 确实显示了动态切片,因为最后一个维度是计算 FFT 的维度,需要在执行计算之前在所有设备上复制。with Mesh(np.array(jax.devices()), ('x',)): x = np.asarray(np.random.randn(32*1024*1024), dtype=np.complex64) y = pjit(lambda x: x, in_shardings=None, out_shardings=P('x'))(x) pjit_my_fft = pjit(my_fft, in_shardings=P('x'), out_shardings=P('x')) pjit_fft = pjit(fft, in_shardings=P('x'), out_shardings=P('x')) print(pjit_my_fft(y)) print(pjit_fft(y)) # dynamic-slice or all-gather are present in the HLO for my_fft, because x is a 1D array assert(re.search(_PATTERN, pjit_my_fft.lower(x).compile().runtime_executable().hlo_modules()[0].to_string()) is None) # dynamic-slice or all-gather are present in the HLO for fft assert(re.search(_PATTERN, pjit_fft.lower(x).compile().runtime_executable().hlo_modules()[0].to_string()) is not None)
# my_fft [ 7.217285 +0.j -3012.4937 +4287.635j -405.83594 +3042.984j ... 1422.4502 +7271.4297j -405.84033 -3042.983j -3012.4963 -4287.6343j] # jax.numpy.fft.fft [ 7.217285 +0.j -3012.4937 +4287.635j -405.83594 +3042.984j ... 1422.4502 +7271.4297j -405.84033 -3042.983j -3012.4963 -4287.6343j]