使用 PyTorch 数据加载训练简单神经网络#
版权所有 2018 JAX 作者。
根据 Apache License, Version 2.0(“许可证”)获得许可; 除非遵守许可证,否则您不得使用此文件。 您可以在以下位置获得许可证副本:
https://apache.ac.cn/licenses/LICENSE-2.0
除非适用法律要求或书面同意,否则根据“原样”基础分发的软件,不附带任何形式的明示或暗示的保证或条件。 有关许可证下的特定语言的权限和限制,请参阅许可证。
让我们将我们在快速入门中展示的所有内容结合起来,训练一个简单的神经网络。 我们将首先指定并使用 JAX 在 MNIST 上训练一个简单的 MLP 进行计算。 我们将使用 PyTorch 的数据加载 API 来加载图像和标签(因为它非常棒,而且世界不需要另一个数据加载库)。
当然,您可以将 JAX 与任何兼容 NumPy 的 API 一起使用,使模型的指定更具即插即用性。 在这里,仅出于解释目的,我们将不使用任何神经网络库或特殊的 API 来构建我们的模型。
import jax.numpy as jnp
from jax import grad, jit, vmap
from jax import random
超参数#
让我们先解决一些记账项目。
# A helper function to randomly initialize weights and biases
# for a dense neural network layer
def random_layer_params(m, n, key, scale=1e-2):
w_key, b_key = random.split(key)
return scale * random.normal(w_key, (n, m)), scale * random.normal(b_key, (n,))
# Initialize all layers for a fully-connected neural network with sizes "sizes"
def init_network_params(sizes, key):
keys = random.split(key, len(sizes))
return [random_layer_params(m, n, k) for m, n, k in zip(sizes[:-1], sizes[1:], keys)]
layer_sizes = [784, 512, 512, 10]
step_size = 0.01
num_epochs = 8
batch_size = 128
n_targets = 10
params = init_network_params(layer_sizes, random.key(0))
自动批处理预测#
首先,让我们定义我们的预测函数。请注意,我们在这里定义的是针对单个图像样本的。我们将使用 JAX 的 vmap
函数来自动处理小批量数据,且不会有性能损失。
from jax.scipy.special import logsumexp
def relu(x):
return jnp.maximum(0, x)
def predict(params, image):
# per-example predictions
activations = image
for w, b in params[:-1]:
outputs = jnp.dot(w, activations) + b
activations = relu(outputs)
final_w, final_b = params[-1]
logits = jnp.dot(final_w, activations) + final_b
return logits - logsumexp(logits)
让我们检查一下我们的预测函数是否只适用于单个图像。
# This works on single examples
random_flattened_image = random.normal(random.key(1), (28 * 28,))
preds = predict(params, random_flattened_image)
print(preds.shape)
(10,)
# Doesn't work with a batch
random_flattened_images = random.normal(random.key(1), (10, 28 * 28))
try:
preds = predict(params, random_flattened_images)
except TypeError:
print('Invalid shapes!')
Invalid shapes!
# Let's upgrade it to handle batches using `vmap`
# Make a batched version of the `predict` function
batched_predict = vmap(predict, in_axes=(None, 0))
# `batched_predict` has the same call signature as `predict`
batched_preds = batched_predict(params, random_flattened_images)
print(batched_preds.shape)
(10, 10)
此时,我们已经拥有了定义和训练神经网络所需的所有要素。我们构建了一个自动批处理版本的 predict
函数,我们应该能够在损失函数中使用它。我们应该能够使用 grad
来计算损失函数相对于神经网络参数的导数。最后,我们应该能够使用 jit
来加速一切。
实用函数和损失函数#
def one_hot(x, k, dtype=jnp.float32):
"""Create a one-hot encoding of x of size k."""
return jnp.array(x[:, None] == jnp.arange(k), dtype)
def accuracy(params, images, targets):
target_class = jnp.argmax(targets, axis=1)
predicted_class = jnp.argmax(batched_predict(params, images), axis=1)
return jnp.mean(predicted_class == target_class)
def loss(params, images, targets):
preds = batched_predict(params, images)
return -jnp.mean(preds * targets)
@jit
def update(params, x, y):
grads = grad(loss)(params, x, y)
return [(w - step_size * dw, b - step_size * db)
for (w, b), (dw, db) in zip(params, grads)]
使用 PyTorch 加载数据#
JAX 专注于程序转换和加速器支持的 NumPy,因此我们没有在 JAX 库中包含数据加载或处理的功能。市面上已经有很多优秀的数据加载器,所以我们直接使用它们,而不是重新发明轮子。我们将使用 PyTorch 的数据加载器,并创建一个小型的垫片使其能够与 NumPy 数组一起工作。
!pip install torch torchvision
Requirement already satisfied: torch in /opt/anaconda3/lib/python3.7/site-packages (1.4.0)
Requirement already satisfied: torchvision in /opt/anaconda3/lib/python3.7/site-packages (0.5.0)
Requirement already satisfied: numpy in /opt/anaconda3/lib/python3.7/site-packages (from torchvision) (1.17.2)
Requirement already satisfied: six in /opt/anaconda3/lib/python3.7/site-packages (from torchvision) (1.12.0)
Requirement already satisfied: pillow>=4.1.1 in /opt/anaconda3/lib/python3.7/site-packages (from torchvision) (6.2.0)
import numpy as np
from jax.tree_util import tree_map
from torch.utils import data
from torchvision.datasets import MNIST
def numpy_collate(batch):
return tree_map(np.asarray, data.default_collate(batch))
class NumpyLoader(data.DataLoader):
def __init__(self, dataset, batch_size=1,
shuffle=False, sampler=None,
batch_sampler=None, num_workers=0,
pin_memory=False, drop_last=False,
timeout=0, worker_init_fn=None):
super(self.__class__, self).__init__(dataset,
batch_size=batch_size,
shuffle=shuffle,
sampler=sampler,
batch_sampler=batch_sampler,
num_workers=num_workers,
collate_fn=numpy_collate,
pin_memory=pin_memory,
drop_last=drop_last,
timeout=timeout,
worker_init_fn=worker_init_fn)
class FlattenAndCast(object):
def __call__(self, pic):
return np.ravel(np.array(pic, dtype=jnp.float32))
# Define our dataset, using torch datasets
mnist_dataset = MNIST('/tmp/mnist/', download=True, transform=FlattenAndCast())
training_generator = NumpyLoader(mnist_dataset, batch_size=batch_size, num_workers=0)
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /tmp/mnist/MNIST/raw/train-images-idx3-ubyte.gz
Extracting /tmp/mnist/MNIST/raw/train-images-idx3-ubyte.gz to /tmp/mnist/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to /tmp/mnist/MNIST/raw/train-labels-idx1-ubyte.gz
Extracting /tmp/mnist/MNIST/raw/train-labels-idx1-ubyte.gz to /tmp/mnist/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to /tmp/mnist/MNIST/raw/t10k-images-idx3-ubyte.gz
Extracting /tmp/mnist/MNIST/raw/t10k-images-idx3-ubyte.gz to /tmp/mnist/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to /tmp/mnist/MNIST/raw/t10k-labels-idx1-ubyte.gz
Extracting /tmp/mnist/MNIST/raw/t10k-labels-idx1-ubyte.gz to /tmp/mnist/MNIST/raw
Processing...
Done!
# Get the full train dataset (for checking accuracy while training)
train_images = np.array(mnist_dataset.train_data).reshape(len(mnist_dataset.train_data), -1)
train_labels = one_hot(np.array(mnist_dataset.train_labels), n_targets)
# Get full test dataset
mnist_dataset_test = MNIST('/tmp/mnist/', download=True, train=False)
test_images = jnp.array(mnist_dataset_test.test_data.numpy().reshape(len(mnist_dataset_test.test_data), -1), dtype=jnp.float32)
test_labels = one_hot(np.array(mnist_dataset_test.test_labels), n_targets)
/opt/anaconda3/lib/python3.7/site-packages/torchvision/datasets/mnist.py:55: UserWarning: train_data has been renamed data
warnings.warn("train_data has been renamed data")
/opt/anaconda3/lib/python3.7/site-packages/torchvision/datasets/mnist.py:45: UserWarning: train_labels has been renamed targets
warnings.warn("train_labels has been renamed targets")
/opt/anaconda3/lib/python3.7/site-packages/torchvision/datasets/mnist.py:60: UserWarning: test_data has been renamed data
warnings.warn("test_data has been renamed data")
/opt/anaconda3/lib/python3.7/site-packages/torchvision/datasets/mnist.py:50: UserWarning: test_labels has been renamed targets
warnings.warn("test_labels has been renamed targets")
训练循环#
import time
for epoch in range(num_epochs):
start_time = time.time()
for x, y in training_generator:
y = one_hot(y, n_targets)
params = update(params, x, y)
epoch_time = time.time() - start_time
train_acc = accuracy(params, train_images, train_labels)
test_acc = accuracy(params, test_images, test_labels)
print("Epoch {} in {:0.2f} sec".format(epoch, epoch_time))
print("Training set accuracy {}".format(train_acc))
print("Test set accuracy {}".format(test_acc))
Epoch 0 in 55.15 sec
Training set accuracy 0.9157500267028809
Test set accuracy 0.9195000529289246
Epoch 1 in 42.26 sec
Training set accuracy 0.9372166991233826
Test set accuracy 0.9384000301361084
Epoch 2 in 44.37 sec
Training set accuracy 0.9491666555404663
Test set accuracy 0.9469000697135925
Epoch 3 in 41.75 sec
Training set accuracy 0.9568166732788086
Test set accuracy 0.9534000158309937
Epoch 4 in 41.16 sec
Training set accuracy 0.9631333351135254
Test set accuracy 0.9577000737190247
Epoch 5 in 38.89 sec
Training set accuracy 0.9675000309944153
Test set accuracy 0.9616000652313232
Epoch 6 in 40.68 sec
Training set accuracy 0.9708333611488342
Test set accuracy 0.9650000333786011
Epoch 7 in 41.50 sec
Training set accuracy 0.973716676235199
Test set accuracy 0.9672000408172607
我们现在已经使用了 JAX API 的全部功能:grad
用于计算导数,jit
用于加速,vmap
用于自动向量化。我们使用 NumPy 来指定我们所有的计算,并借用了 PyTorch 优秀的的数据加载器,并在 GPU 上运行了整个过程。